Sketch Based Image Retrieval

Computer Vision - Why is it important?

Vision is useful: Images and video are everywhere!

Difficult for Computers!

To extract "meaning" from pixels

What we see

What a computer sees

Source: S. Narasimhan

Challenges in Computer Vision

But data stored in different domains/modalities!

Cross-Modal Retrieval - SBIR

trekking backpack

Applications

Overall Idea of SBIR

Learn Crossdomain matching model

Training Images and Sketches From category : {Cat, Flower, Butterfly}

Challenges

- 1. Significant differences between the sketches and images.
- 2. Significant variations within the same classes of both sketches and images.

Latent-space Embedding

Zero-Shot ZBIR

- The number of categories is dynamically increasing.
- We have seen all examples during training is a strong assumption.
- What if during testing, the query sketch comes from an unseen/novel class, which is not seen during training.

Linking the Seen & Unseen Classes

Conventional Supervised Classification

Zero-Shot Learning: Given an image which belongs to a novel category, predict the class.

- Attributes of the categories are mapped with the features.
- Attributes are shared across categories, both seen and unseen.

Attributes

☐ Attributes can be *Manual*, *Relative* or *Class-name word-embeddings*.

Which image is...

polar bear

black: no white: yes brown: no stripes: no water: ves eats fish: yes

zebra

black: yes white: yes brown: no stripes: yes water: no eats fish: no

(a) Manual Attributes

(b) Relative Attributes

- ** (a) Images and corresponding attributes are taken from Animals with Attributes(AwA) dataset, proposed by Lampert et al., CVPR, 2009[1].
- ** (b) Images and relative attribute annotations are from Relative Face Attribute dataset, proposed by Biswas et al., CVPR 2013[2]
- [1] C. H. Lampert, H. Nickisch and S. Harmeling, Learning to detect unseen object classes by between-class attribute transfer, CVPR, 2009.
- [2] A. Biswas and D. Parikh, Simultaneous active learning of classifiers and attributes via relative feedback, CVPR, 2013.
- ☐ Word-embedding representations (GloVe, Word2Vec) of class-names can be used as Attributes.

ZS-SBIR - Training

Feature extraction module

ZS-SBIR - Training

Content-Style decomposition module

ZS-SBIR - Training

Content-Style fusion module

Retrieval

Content-Style decomposition module

Latent-space Matching

extraction module

Image-space Matching

Qualitative Results

Quantitative Results

Type	Evaluation methods	Precision@200	MAP@200
SBIR methods	Baseline	0.106	0.054
	Siamese-1 [11]	0.243	0.134
	Siamese-2 [3]	0.251	0.149
	Coarse-grained Triplet [25]	0.169	0.083
	Fine-grained Triplet	0.155	0.081
	DSH [17]	0.153	0.059
ZSL methods	Direct Regression	0.066	0.022
	ESZSL [22]	0.187	0.117
	SAE [14]	0.238	0.136
ZS-SBIR	CAAE [35]	0.260	0.156
	CVAE [35]	0.333	0.225
	Proposed	0.4001	0.3581

Effect of Imbalance in Training Data

State-of-the-art ZS-SBIR approaches underperform if training data is imbalanced.

Dataset	Method	Balanced Data	Imbalanced data			
			Long-tailed		Step	
			P=10	P=100	P=10	P=100
mini-Sketchy*	Style-guided network [1]	0.395	0.234	0.185	0.241	0.156

Table 1. Performance (MAP@200) of state-of-the-art ZS-SBIR models for imbalanced data

[1] T. Dutta and S. Biswas, "Style-guided zero-shot sketch-based image retrieval," BMVC, 2019

^{*} a balanced sub-set of Sketchy-extended dataset with 60-classes, each having 500 images and sketches per class.

Handling Imbalance in ZS-SBIR

Proposed AMDReg

We propose Adaptive-margin Diversity Regularizer as additional loss component with any existing ZS-SBIR model during training.

$$R(P) = \frac{1}{C_{seen}} \sum_{i < j} \{ ||p_i - p_j||_2^2 - (d_{mean} + \Delta_j) \}^2,$$

$$\forall j \in \{1, 2, ..., C_{seen} \}$$

$$\Delta_j = \frac{K}{n_{effective}^j}$$

Latent Space Embedding

Figure 2. Illustration of proposed AMDReg in learning the latent-space embeddings

ZS-SBIR Approaches with AMDReg

Method	Sketch	Sketchy-extended		TU-Berlin	
	MAP@all	Precision@100	MAP@all	Precision@100	
Style-guided network [1]	0.375	0.484	0.254	0.355	
Style-guided network [1] + AMDReg	0.410	0.512	0.291	0.376	
SEM-PCYC [2]	0.349	0.463	0.297	0.426	
SEM-PCYC [2]+ AMDReg	0.397	0.494	0.330	0.473	
SAKE [3]	0.547	0.692	0.428*	0.534*	
SAKE [3]+ AMDReg	0.551	0.715	0.447	0.574	

Table 2. Performance of state-of-the-art ZS-SBIR model with proposed AMDReg

^{*} produced using the original code provided by the authors.

^[1] T. Dutta and S. Biswas, "Style-guided zero-shot sketch-based image retrieval," BMVC, 2019

^[2] A. Dutta and Z. Akata, "Semantically-tied paired cycle consistency for zero-shot sketch-based image retrieval," CVPR,2019

^[3] Q. Liu, L. Xie, H. Wang and A. Yuille, "Semantic-aware knowledge preservation for zero-shot sketch-based image retrieval," ICCV, 2019

Qualitative Results

Conclusion & Future Directions

- Cross-modal retrieval is a very important research area.
- ☐ With touch screens, etc. SBIR will have several applications in future.
- Generalizing to completely unseen classes without any prior information is important for real-world applications.
- Handling challenges like data imbalances, etc. can positively affect the performance.
- Fusing multiple modalities, like sketch and text as input.
- Accounting for domain differences in the data.
- ____.....

Thank You

